#title: function that #author: jj, irene,... #let: x[2] = [-4,-3,-2,1,2,3,4]; lll = [0,1]; lll2 = {#x[#lll]}; v = [-3 , -2 , -3 ,1,2,3,4]; x0 = [ -0 -1 , 0 , 1, 2 ]; f2 ={{1/(x-#x[0]) + 1/(x-#x[1]) + #v}} ; f0 = maxima{1/(x-#x[#lll]) + 1/(x-#x[0]) + 1/(x-#x[1]) + #v} ; f1 = maxima{ratsimp(#f0)} ; f ftex = #f1; #jjj f f2 = {{ratsimp(1/(x-#x[0]) + 1/(x-#x[1]) + #v)}} ; fstr = # f2; #usepackage \usepackage{pgfplots} \usepackage{tikz} #question lll = #lll #lll2 #x[] $#f2 = #f0 = #f1 = #ftex$ Consider a function $f$ (== $#ftex$) whose graphic is \begin{tikzpicture} \begin{axis}[ restrict y to domain=-7:7, grid, samples=1000, minor tick num=1, xmin = -7, xmax = 7, ymin = -6, ymax = 6, unbounded coords=jump, axis x line=middle, axis y line=middle] \addplot[color=red,mark=none,domain=-7:7] {#f1}; \end{axis} \end{tikzpicture} The asymptotes are integer numbers. \begin{enumerate} \item Write the equation of the asymptotes. \item Write a function ??? with identical assimptotical behaviour. \end{enumerate} #result for example: $f(x) = #f0 = #ftex$ %% for example: $f(x) = # fstr # f2$