#title: Uso de diferencial para cálculos aproximados 10 A #author: Smirnov #let: n n1 = [2,3,4,5]; n m1 = [2,3,4,5]; n k1 = [3,4]; n a = [5,6,7,8,9]; n b = [5,6,7,8,9]; n d = [2,3,4]; f c = #a^#n1+#b^#m1-#d^#k1; n da = [-0.003,-0.001,0.001,0.003]; n db = [-0.002,0.002]; f a1 =#a+#da; f b1 =#b+#db; f n2 = #n1-1; f m2 = #m1-1; f k2 = 1-#k1; f r = #d+ #n1* #a^#n2* #d^#k2 *#da/#k1 + #m1* #b^#m2 *#d^#k2* #db/#k1; #question: \noindent Usando diferenciais, calcule um valor aproximado de $S=\sqrt[{#k1}]{{#a1}^{#n1}+{#b1}^{#m1}-#c}$. #sugestion: #resolution: Sejam $f(x,y)=\sqrt[{#k1}]{x^{#n1}+y^{#m1}-#c}$, $x=#a$, $y=#b$, $\Delta x=#da$ e $\Delta y=#db$. Então temos $$ S=f(x+\Delta x,y+\Delta y)\approx f(x,y)+ \frac{\partial f(x,y)}{\partial x}\Delta x + \frac{\partial f(x,y)}{\partial y}\Delta y $$ $$ = #d+\frac{#n1}{#k1} #a^{#n2} #d^{#k2} ( #da ) + \frac{#m1}{#k1} #b^{#m2} #d^{#k2}( #db) = #r. $$ #result: #r #verification: #r type=f error=10 ** (-3) ; #com precisão 10^-3