#title: Derivada de funcao composta de 2 variaveis 10 A #author: Smirnov #let: ## f def_e = e :: %e; f F = [%e^u, sin(u), cos(u), tan(u), atan(u)]; f G = [v^2, v^3, sqrt(v), log(v)]; f u1 = [x^2+y, sqrt(x)+y, x+sqrt(y)]; f v1 = [x+y^4, sqrt(x)+y, sqrt(x+y)]; maxima{ FF(u) :=#F ; GG(v) :=#G ; H(u,v) :=FF(u)*GG(v); u2(x,y):=#u1; v2(x,y):=#v1; }; f HH = H(u2(x,y),v2(x,y)); f Dx = diff(#HH,x,1); f Dy = diff(#HH,y,1); f Dxy = diff(#HH,x,1,y,1); #question: \noindent Seja $f(x,y)=#HH$. Calcule as derivadas parciais $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ e $\frac{\partial^2 f}{\partial x\partial y}$. #sugestion: #resolution: Utilizando regra de cadeia obtemos $$ \frac{\partial f}{\partial x} = #Dx, $$ $$ \frac{\partial f}{\partial y} = #Dy, $$ $$ \frac{\partial^2 f}{\partial x\partial y} = #Dxy . $$ #result: $$ #Dx $$ $$ #Dy $$ $$ #Dxy $$ #verification #Dx type=x_xmaxfun ; #Dy type=x_xmaxfun ; #Dxy type=x_xmaxfun ; #fim