#title:Regra de integra\c{c}\~{a}o para ($\alfa \neq -1$) #Let: f alfa = [ 2 ,3, 4] ; f P= [x, sin(x), cos(x), exp(x) ]; f dp=[1, cos(x), -sin(x),exp(x) ]; p~dp; cf p_alfa= #p^(#alfa); cf res = ((#p)^(#alfa+1))/(#alfa+1); #Question: \noindent Calcule o integral indefinido, $$ \int (#p^(#alfa))*(#dp) dx. $$ #Sugestion: \noindent Utilize a f\'{o}rmula do formul\'{a}rio $$ \int u^{\alpha} u'= \frac{u^{\alpha+1}}{\alpha+1}+C. $$ certificando-se que $\alpha \neq 1$. #Resolution Obtem-se $$ \int (#p^(#alfa))*(#dp) dx= #res+C. $$ #result $$ #res+C $$ #Verify (#P^(#alfa+1))/(#alfa+1).