#title:Regra de integra\c{c}\~{a}o P $\frac{u'}{\sqrt{1+u^2}}=arcsinh(u)+C$ #Let: f u= [x, sin(x), cos(x), exp(x) ]; f du=[1, cos(x), -sin(x),exp(x) ]; f raiz=[sqrt(1+x^2), sqrt(1+(sin(x))^2),sqrt(1+(cos(x))^2),sqrt(1+(exp(x))^2)]; u~du~raiz; cf res = arcsinh(#u); #Question: \noindent Calcule o integral indefinido, $$ \int (#du)/(#raiz) dx. $$ #Sugestion: \noindent Utilize a f\'{o}rmula do formul\'{a}rio $$ \int \frac{u'}{\sqrt{1+u^2}} dx= arcsinh(u)+C. $$ #Resolution Obtem-se $$ \int (#du)/(#raiz) dx = #res+C. $$ #result $$ #res+C $$ #Verify arcsinh(#u).