#Title: Sistema de três lineares caso I #Let: n x1 = [ 0 , 1 , 2 , -1 , -3 , 5 , 3] ; n x2 = [ 1 , 2 , 3 , -2 , -1 , -3 , 4] ; n x3 = [ 1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a11 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a12 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a13 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a22p = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a23p = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a33pp = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n m21 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n m31 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n m32 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; cn a21 = #m21 * #a11 ; cn a31 = #m31 * #a11 ; cn a32p = #m32 * #a22p ; cn a22 = #a22p + #m21 * #a12 ; cn a23 = #a23p + #m21 * #a13 ; cn a33p = #a33pp + #m32 * #a23p ; cn a33 = #a33p + #m31 * #a13 ; cn a32 = #a32p + #m31 * #a12 ; cn b1 = #a11 * #x1 + #a12 * #x2 + #a13 * #x3 ; cn b2 = #a21 * #x1 + #a22 * #x2 + #a23 * #x3 ; cn b3 = #a31 * #x1 + #a32 * #x2 + #a33 * #x3 ; cn b2p = #b2 - #m21 * #b1 ; cn b3p = #b3 - #m31 * #b1 ; cn b3pp = #b3p - #m32 * #b2p ; #Question: \noindent Seja $(S)$ o sistema de equações lineares cuja matriz dos coeficientes é $A=\smleft #a11 & #a12 & #a13 \\ #a21 & #a22 & #a23 \\ #a31 & #a32 & #a33 \smright$ e o vector dos termos independentes é $b=\smleft #b1 \\ #b2 \\ #b3 \smright$. Determine $\CS_{(S)}$. #Sugestion: \noindent Utilize o Método de Gauss. #resolution: $ \left[ \begin{array}{ccc|c} \fbox{#a11} & #a12 & #a13 & #b1 \\ #a21 & #a22 & #a23 & #b2 \\ #a31 & #a32 & #a33 & #b3 \end{array} \right] \begin{array}{l} \xlongleftrightarrow{\hspace{2.2cm}}\\ \ell_2\leftarrow\ell_2-(#m21)\ell_1\\ \ell_3\leftarrow\ell_3-(#m31)\ell_1\\ \end{array} \left[ \begin{array}{ccc|c} #a11 & #a12 & #a13 & #b1 \\ 0 & \fbox{#a22p} & #a23p & #b2p \\ 0 & #a32p & #a33p & #b3p \end{array} \right] \begin{array}{l} \xlongleftrightarrow{\hspace{2.2cm}}\\ \\ \ell_3\leftarrow\ell_3-(#m32)\ell_2\\ \end{array} \left[ \begin{array}{ccc|c} #a11 & #a12 & #a13 & #b1 \\ 0 & #a22p & #a23p & #b2p \\ 0 & 0 & #a33pp & #b3pp \end{array} \right] $ Assim, tem-se: \begin{gather*} x_3=\frac{#b3pp}{#a33pp}=#x3\\ x_2=\frac{#b2p-#a23p\times#x3}{#a22p}=#x2\\ x_1=\frac{#b1-#a12\times#x2-#a13\times#x3}{#a11}=#x1 \end{gather*} #Result: $CS_{(S)}=\{(#x1,#x2,#x3)\}$ #Verification: vector(#x1, #x2, #x3) ; #usepackage \usepackage{amsmath,amssymb} \usepackage{extarrows} \makeatletter % smallmatrix with right alignment \newenvironment{rsmallmatrix}{\null\,\vcenter\bgroup \Let@\restore@math@cr\default@tag \baselineskip6\ex@ \lineskip1.5\ex@ \lineskiplimit\lineskip \ialign\bgroup\hfil$\m@th\scriptstyle##$&&\thickspace\hfil $\m@th\scriptstyle##$\crcr }{% \crcr\egroup\egroup\,% } \makeatother \newcommand{\smleft}{\left[\begin{rsmallmatrix}} \newcommand{\smright}{\end{rsmallmatrix}\right]} \DeclareMathOperator{\CS}{CS}