#Title: Sistema de tr?s equacoes lineares caso II - Imposs?vel #Let: n a11 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a12 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a13 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n b1 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a22p = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n a23p = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n b2p = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n b3pp = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n m21 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n m31 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; n m32 = [1 , 2 , 3 , -2 , -1 , -3 , 4] ; cn a21 = #m21 * #a11 ; cn a22 = #a22p + #m21 * #a12 ; cn a23 = #a23p + #m21 * #a13 ; cn b2 = #b2p + #m21 * #b1 ; cn a31 = #m31 * #a11 ; cn a32p = #m32 * #a22p ; cn a33p = #m32 * #a23p ; cn b3p = #b3pp + #m32 * #b2p ; cn a32 = #a32p + #m31 * #a12 ; cn a33 = #a33p + #m31 * #a13 ; cn b3 = #b3p + #m31 * #b1 ; #Question: \noindent Seja $(S)$ o sistema de equa??es lineares cuja matriz dos coeficientes ? $A=\smleft #a11 & #a12 & #a13 \\ #a21 & #a22 & #a23 \\ #a31 & #a32 & #a33 \smright$ e o vector dos termos independentes ? $b=\smleft #b1 \\ #b2 \\ #b3 \smright$. Determine $\CS_{(S)}$. #Suggestion: \noindent Utilize o M?todo de Gauss. #Solution: \begin{align*} \left[ \begin{array}{ccc|c} \fbox{#a11} & #a12 & #a13 & #b1 \\ #a21 & #a22 & #a23 & #b2 \\ #a31 & #a32 & #a33 & #b3 \end{array} \right] & \begin{array}{l} \xlongleftrightarrow{\hspace{2.2cm}}\\ \ell_2\leftarrow\ell_2-(#m21)\ell_1\\ \ell_3\leftarrow\ell_3-(#m31)\ell_1\\ \end{array} \left[ \begin{array}{ccc|c} #a11 & #a12 & #a13 & #b1 \\ 0 & \fbox{#a22p} & #a23p & #b2p \\ 0 & #a32p & #a33p & #b3p \end{array} \right] \\ & \begin{array}{l} \xlongleftrightarrow{\hspace{2.2cm}}\\ \\ \ell_3\leftarrow\ell_3-(#m32)\ell_2\\ \end{array} \left[ \begin{array}{ccc|c} #a11 & #a12 & #a13 & #b1 \\ 0 & #a22p & #a23p & #b2p \\ 0 & 0 & 0 & #b3pp \end{array} \right] \end{align*} Da terceira equa??o conclui-se que o sistema $(S)$ n?o tem solu??es, ou seja, $\CS_$(S)=\emptyset$. #Result: \[ \CS_{(S)}=\emptyset \] #Verification: set( \emptyset );