\noindent Calcule o integral de superfície $$ I=\int\int_{z=2(x^2+y^2)^{-2}, \; x^2+y^2\leq 4} (1+64 (x^2+y^2)^{-5})^{-1} (x^2+y^2)^{-6}dS. $$ .................... Pela definição do integral de superfície temos $$ I=\int\int_{x^2+y^2\leq 4} (1+64 (x^2+y^2)^{-5})^{-1} (x^2+y^2)^{-6} \sqrt{1+((2 (x^2+y^2)^{-2})'_x)^2+ ((2 (x^2+y^2)^{-2})'_y)^2}dxdy $$ $$ =\int\int_{x^2+y^2\leq 4} (1+64 (x^2+y^2)^{-5})^{-1} (x^2+y^2)^{-6} \sqrt{1+64 (x^2+y^2)^{-5}}dxdy. $$ A seguinte figura representa o domínio de integração no plano $xy$. \begin{center} \begin{tikzpicture}[scale=0.3] \fill[gray!30] (0,0) circle (2); \draw[black] (0,0) circle (2); \draw[->](-7,0)--(7,0) node[right]{$x$}; \draw[->](0,-7)--(0,7) node[above]{$y$}; \foreach \x/\xtext in { 2/2, 4/4, 6/6, } \draw[shift={(\x,0)}] (0pt,0.3pt) -- (0pt,-0.3pt) node[below] {$\xtext$}; \foreach \x/\xtext in {-6/6, -4/4, -2/2 } \draw[shift={(\x,0)}] (0pt,0.3pt) -- (0pt,-0.3pt) node[below] {$-\xtext$}; \foreach \y/\ytext in { 2/2, 4/4, 6/6} \draw[shift={(0,\y)}] (0.3pt,0pt) -- (-0.3pt,0pt) node[left] {$\ytext$}; \foreach \y/\ytext in {-6/6, -4/4, -2/2} \draw[shift={(0,\y)}] (0.3pt,0pt) -- (-0.3pt,0pt) node[left] {$-\ytext$}; \foreach \x in {-7,...,7} \draw (\x ,-1pt) -- (\x ,1pt); \foreach \y in {-7,...,7} \draw (-1pt,\y ) -- (1pt,\y ); \end{tikzpicture} \end{center} Introduzindo as coordenadas polares $x=r\cos\phi$ e $y=r\sin\phi$, obtemos $$ I=\int_0^{2\pi}d\phi \int_0^{2} (1+64 r^{-10})^{-1}r^{-12}\sqrt{1+64 r^{-10}}rdr. $$ Fazendo $u=1+64 r^{-10}$, obtemos $$ I=\frac{2\pi}{-640} \int_1^{{{17}\over{16}}} u^{-1+\frac{1}{2}}du = {{4-\sqrt{17}}\over{640}} \pi . $$