\noindent Calcule o integral de superfície $$ I=\int\int_{z=\sqrt{x^2+y^2}, \; 1 \leq \sqrt{x^2+y^2} \leq 2} x^2 z dS. $$ .................... Pela definição do integral de superfície temos $$ I=\int\int_{1 \leq \sqrt{x^2+y^2} \leq 2} x^2 \sqrt{x^2+y^2} \sqrt{1+((\sqrt{x^2+y^2})'_x)^2+ ((\sqrt{x^2+y^2})'_y)^2}dxdy $$ $$ =\int\int_{1 \leq \sqrt{x^2+y^2} \leq 2} x^2 \sqrt{x^2+y^2} \sqrt{1+\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}}dxdy. $$ $$ =\int\int_{1 \leq \sqrt{x^2+y^2} \leq 2} x^2 \sqrt{x^2+y^2} \sqrt{2}dxdy. $$ A seguinte figura representa o domínio de integração no plano $xy$. \begin{center} \begin{tikzpicture}[scale=0.3] \fill[gray!30] (0,0) circle (2); \fill[white] (0,0) circle (1); \draw[black] (0,0) circle (2); \draw[black] (0,0) circle (1); \draw[->](-10,0)--(10,0) node[right]{$x$}; \draw[->](0,-10)--(0,10) node[above]{$y$}; \foreach \x/\xtext in { 2/2, 4/4, 6/6, 8/8 } \draw[shift={(\x,0)}] (0pt,0.3pt) -- (0pt,-0.3pt) node[below] {$\xtext$}; \foreach \x/\xtext in {-8/8, -6/6, -4/4, -2/2 } \draw[shift={(\x,0)}] (0pt,0.3pt) -- (0pt,-0.3pt) node[below] {$-\xtext$}; \foreach \y/\ytext in { 2/2, 4/4, 6/6, 8/8} \draw[shift={(0,\y)}] (0.3pt,0pt) -- (-0.3pt,0pt) node[left] {$\ytext$}; \foreach \y/\ytext in {-8/8, -6/6, -4/4, -2/2} \draw[shift={(0,\y)}] (0.3pt,0pt) -- (-0.3pt,0pt) node[left] {$-\ytext$}; \foreach \x in {-8,...,8} \draw (\x ,-1pt) -- (\x ,1pt); \foreach \y in {-8,...,8} \draw (-1pt,\y ) -- (1pt,\y ); \end{tikzpicture} \end{center} Introduzindo as coordenadas polares $x=r\cos\phi$ e $y=r\sin\phi$, obtemos $$ I=\sqrt{2}\int_0^{2\pi} \int_{1}^{2} \cos^2(\phi) r^4 dr d\phi $$ $$ =\sqrt{2}\int_0^{2\pi} \cos^2(\phi) \left(\frac{2^5}{5}-\frac{1^5}{5}\right) d\phi = \sqrt{2}\frac{31}{5} \int_{0}^{2\pi}\left(\frac{1+\cos(2\phi)}{2}\right) d\phi = \sqrt{2}\frac{31}{5}\pi . $$