#title: Integral de superfície 20 A #author: Smirnov, Irene #usepackage: \usepackage{tikz} #let: f def_pi = pi :: %pi; n a = [2,3]; n b = [-2,-1,2]; n m = [-2,-1,2]; n r = [2,3]; n aa = 4*#a*#a*#m*#m; n m2 = 2*#m-1; n m3 = 2*#m-2; n mm = 4*#m-2; n mmm = 4*#m-4; n rr = #r*#r; n m5 = 4*(4*#m -2)*#a*#a*#m*#m; f r3 = 1+4*#a*#a*#m*#m*#r^(4*#m-2); f I = ratsimp(((#r3)^(#b+3/2)-1)/(2*(4*#m-2)*#a*#a*#m*#m*(#b+3/2))); #question: \noindent Calcule o integral de superfície $$ I=\int\int_{z=#a(x^2+y^2)^{#m}, \; x^2+y^2\leq #rr} (1+#aa (x^2+y^2)^{#m2})^{#b} (x^2+y^2)^{#m3}dS. $$ #sugestion: #resolution: Pela definição do integral de superfície temos $$ I=\int\int_{x^2+y^2\leq #rr} (1+#aa (x^2+y^2)^{#m2})^{#b} (x^2+y^2)^{#m3} \sqrt{1+((#a (x^2+y^2)^{#m})'_x)^2+ ((#a (x^2+y^2)^{#m})'_y)^2}dxdy $$ $$ =\int\int_{x^2+y^2\leq #rr} (1+#aa (x^2+y^2)^{#m2})^{#b} (x^2+y^2)^{#m3} \sqrt{1+#aa (x^2+y^2)^{#m2}}dxdy. $$ A seguinte figura representa o domínio de integração no plano $xy$. \begin{center} \begin{tikzpicture}[scale=0.3] \fill[gray!30] (0,0) circle (#r); \draw[black] (0,0) circle (#r); \draw[->](-7,0)--(7,0) node[right]{$x$}; \draw[->](0,-7)--(0,7) node[above]{$y$}; \foreach \x/\xtext in { 2/2, 4/4, 6/6, } \draw[shift={(\x,0)}] (0pt,0.3pt) -- (0pt,-0.3pt) node[below] {$\xtext$}; \foreach \x/\xtext in {-6/6, -4/4, -2/2 } \draw[shift={(\x,0)}] (0pt,0.3pt) -- (0pt,-0.3pt) node[below] {$-\xtext$}; \foreach \y/\ytext in { 2/2, 4/4, 6/6} \draw[shift={(0,\y)}] (0.3pt,0pt) -- (-0.3pt,0pt) node[left] {$\ytext$}; \foreach \y/\ytext in {-6/6, -4/4, -2/2} \draw[shift={(0,\y)}] (0.3pt,0pt) -- (-0.3pt,0pt) node[left] {$-\ytext$}; \foreach \x in {-7,...,7} \draw (\x ,-1pt) -- (\x ,1pt); \foreach \y in {-7,...,7} \draw (-1pt,\y ) -- (1pt,\y ); \end{tikzpicture} \end{center} Introduzindo as coordenadas polares $x=r\cos\phi$ e $y=r\sin\phi$, obtemos $$ I=\int_0^{2\pi}d\phi \int_0^{#r} (1+#aa r^{#mm})^{#b}r^{#mmm}\sqrt{1+#aa r^{#mm}}rdr. $$ Fazendo $u=1+#aa r^{#mm}$, obtemos $$ I=\frac{2\pi}{#m5} \int_1^{#r3} u^{#b+\frac{1}{2}}du = #I \pi . $$ #result: #Verification: