#title: Integral de superfície 1 A #author: Smirnov, Irene #let: f def_pi = pi :: %pi; n a = [1,2,3]; n da = [1,2]; n b = #a+#da; f c = #b^5-#a^5; #question: \noindent Calcule o integral de superfície $$ I=\int\int_{z=\sqrt{x^2+y^2}, \; #a \leq \sqrt{x^2+y^2} \leq #b} x^2 z dS. $$ #sugestion: #resolution: Pela definição do integral de superfície temos $$ I=\int\int_{#a \leq \sqrt{x^2+y^2} \leq #b} x^2 \sqrt{x^2+y^2} \sqrt{1+((\sqrt{x^2+y^2})'_x)^2+ ((\sqrt{x^2+y^2})'_y)^2}dxdy $$ $$ =\int\int_{#a \leq \sqrt{x^2+y^2} \leq #b} x^2 \sqrt{x^2+y^2} \sqrt{1+\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}}dxdy. $$ $$ =\int\int_{#a \leq \sqrt{x^2+y^2} \leq #b} x^2 \sqrt{x^2+y^2} \sqrt{2}dxdy. $$ A seguinte figura representa o domínio de integração no plano $xy$. \begin{center} \begin{tikzpicture}[scale=0.3] \fill[gray!30] (0,0) circle (#b); \fill[white] (0,0) circle (#a); \draw[black] (0,0) circle (#b); \draw[black] (0,0) circle (#a); \draw[->](-10,0)--(10,0) node[right]{$x$}; \draw[->](0,-10)--(0,10) node[above]{$y$}; \foreach \x/\xtext in { 2/2, 4/4, 6/6, 8/8 } \draw[shift={(\x,0)}] (0pt,0.3pt) -- (0pt,-0.3pt) node[below] {$\xtext$}; \foreach \x/\xtext in {-8/8, -6/6, -4/4, -2/2 } \draw[shift={(\x,0)}] (0pt,0.3pt) -- (0pt,-0.3pt) node[below] {$-\xtext$}; \foreach \y/\ytext in { 2/2, 4/4, 6/6, 8/8} \draw[shift={(0,\y)}] (0.3pt,0pt) -- (-0.3pt,0pt) node[left] {$\ytext$}; \foreach \y/\ytext in {-8/8, -6/6, -4/4, -2/2} \draw[shift={(0,\y)}] (0.3pt,0pt) -- (-0.3pt,0pt) node[left] {$-\ytext$}; \foreach \x in {-8,...,8} \draw (\x ,-1pt) -- (\x ,1pt); \foreach \y in {-8,...,8} \draw (-1pt,\y ) -- (1pt,\y ); \end{tikzpicture} \end{center} Introduzindo as coordenadas polares $x=r\cos\phi$ e $y=r\sin\phi$, obtemos $$ I=\sqrt{2}\int_0^{2\pi} \int_{#a}^{#b} \cos^2(\phi) r^4 dr d\phi $$ $$ =\sqrt{2}\int_0^{2\pi} \cos^2(\phi) \left(\frac{#b^5}{5}-\frac{#a^5}{5}\right) d\phi = \sqrt{2}\frac{#c}{5} \int_{0}^{2\pi}\left(\frac{1+\cos(2\phi)}{2}\right) d\phi = \sqrt{2}\frac{#c}{5}\pi . $$ #result: #Verification: #usepackage: \usepackage{tikz}