#Title: Valores e vectores proprios em dimencao 2 #Let: n e_11 = [ 1, 2, 3, -2, -1, -3, 4 ] ; n e_12 = [ 1, 2, 3, -2, -1, -3, 4 ] ; n e_21 = [ 1, 2, 3, -2, -1, -3, 4 ] ; n e_22 = [ 1, 2, 3, -2, -1, -3, 4 ] ; n m1 = [ 5, 2, 3, -2, -2, -3, 4 ] ; n m2 = [ 5, 2, 3, -2, -2, -3, 4 ] ; cn a = #m1 * #e_22 * # e_11 - #m2 * #e_12 * # e_21 ; cn b = #m2 * #e_21 * # e_11 - #m1 * #e_11 * # e_21 ; cn c = #m1 * #e_22 * # e_12 - #m2 * #e_12 * # e_22 ; cn d = #m2 * #e_21 * # e_12 - #m1 * #e_11 * # e_22 ; cn del = #e_11 * # e_22 - #e_21 * # e_12 ; cn lambda_1 = #del * #m1 ; cn lambda_2 = #del * #m2 ; cn f = - (#a + #d) ; cn g = - (#b * #c) ; #Question: \noindent Encontre os valores e vectores pr\'oprios da matriz: $$ A=\left( \begin{array}{cc} a & b\\ c & d \end{array} \right). $$ #Suggestion: \noindent Os valores $\lambda_1$ e $\lambda_2$ pr\'oprios s\~ao solu\c c\~oes da equa\c c\~ao caracter\'\i stica $$ {\rm det}(A-\lambda I)= \{\rm det} \left( \begin{array}{cc} a-\lambda & b\\ c & d-\lambda \end{array} \right) =0. $$ Os vectores pr\'oprios correspondentes $e_1=(e_{11},e_{12})$ e $e_2=(e_{21},e_{22})$ s\~ao vectores n\~ao triviais que verificam as equa\c c\~oes $Ae_k=\lambda_k e_k$, $k=1,2$, respectivamente. #Solution: \noindent A equa\c c\~ao caracter\'\i stica ${\rm det}(A-\lambda I)=0$ \'e $$ \lambda^2 + #f \lambda + #g =0. $$ As suas raizes s\~ao $\lambda_1 = #lambda_1$ e $\lambda_2 = #lambda_2$. Das equa\c c\~oes \begin{eqnarray*} && #a * e_{11} + #b * e_{12} = #\lambda_1 e_{11},\\ && #a * e_{21} + #b * e_{22} = #\lambda_1 e_{21}, \end{eqnarray*} encontramos $e_1=(#e_11,#e_12)$ e $e_2=(#e_21,#e_22)$. #Result: $$ \lambda_1 = #lambda_1, $$ $$ e_1=(#e_11,#e_12), $$ $$ \lambda_2 = #lambda_2, $$ $$ e_1=(#e_21,#e_22). $$ #Verification: eq ( #e_11 * #e_12resposta - #e_12 * #e_11resposta = 0 ) ; eq ( #e_21 * #e_22resposta - #e_22 * #e_21resposta = 0 ) ;